Postreceptoral chromatic-adaptation mechanisms in the red-green and blue-yellow systems using simple reaction times.
نویسندگان
چکیده
Simple visual-reaction times (VRT) were measured for a variety of stimuli selected along red-green (L-M axis) and blue-yellow [S-(L + M) axis] directions in the isoluminant plane under different adaptation stimuli. Data were plotted in terms of the RMS cone contrast in contrast-threshold units. For each opponent system, a modified Piéron function was fitted in each experimental configuration and on all adaptation stimuli. A single function did not account for all the data, confirming the existence of separate postreceptoral adaptation mechanisms in each opponent system under suprathreshold conditions. The analysis of the VRT-hazard functions suggested that both color-opponent mechanisms present a well-defined, transient-sustained structure at marked suprathreshold conditions. The influence of signal polarity and chromatic adaptation on each color axis proves the existence of asymmetries in the integrated hazard functions, suggesting separate detection mechanisms for each pole (red, green, blue, and yellow detectors).
منابع مشابه
Processing time of contour integration: the role of colour, contrast, and curvature.
We investigated the temporal properties of the red - green, blue-yellow, and luminance mechanisms in a contour-integration task which required the linking of orientation across space to detect a 'path'. Reaction times were obtained for simple detection of the stimulus regardless of the presence of a path, and for path detection measured by a yes/no procedure with path and no-path stimuli random...
متن کاملA ratio principle for a red/green and a yellow/blue channel?
There is strong empirical evidence that, under adaptation to another achromatic color stimulus, the lightness of an achromatic color stimulus depends on the ratio of the luminances of the two stimuli. In the present study, the suitability of this ratio principle is tested for two chromatic postreceptoral opponent channels. A Hering red/green channel and a non-Hering yellow/blue channel are spec...
متن کاملLuminance and chromatic signals interact differently with melanopsin activation to control the pupil light response
Intrinsically photosensitive retinal ganglion cells (ipRGCs) express the photopigment melanopsin. These cells receive afferent inputs from rods and cones, which provide inputs to the postreceptoral visual pathways. It is unknown, however, how melanopsin activation is integrated with postreceptoral signals to control the pupillary light reflex. This study reports human flicker pupillary response...
متن کاملRatio model for suprathreshold hue-increment detection.
We use psychophysical techniques to investigate the neural mechanisms subserving suprathreshold chromatic discrimination in human vision. We address two questions: (1) How are the postreceptoral detection mechanism responses combined to form suprathreshold chromatic discriminators? and (2) How do these discriminators contribute to color perception? We use a pedestal paradigm in which the subjec...
متن کاملContour integration in color vision: a common process for the blue–yellow, red–green and luminance mechanisms?
We compare the performance of the red-green, blue-yellow and luminance postreceptoral mechanisms on a contour integration task requiring the linking of oriented Gabor elements across space to extract a winding 'path' or contour. We first establish that for all three mechanisms curvature and contrast are independent; losses in performance due to one cannot be compensated by changes in the other....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2006